

AMENDMENT NO. 2 TO TASK ORDER NO. 2

1. Background Data:

- a. Effective Date of Task Order No. 2: July 9, 2024
- b. Owner: City of Lawrence Utilities
- c. Engineer: American Structurepoint, Inc.
- d. Project: Lawrence 71st Street Lift Station Basin I/I Removal Project

2. Nature of Amendment

Additional Services to be performed by Engineer

Modifications to Payment to Engineer

3. Description of Modifications

Attachment 1, "Modifications"

Attachment 2, Powers Engineering Proposal

Attachment 3, ADS Environmental Services Proposal

Owner and Engineer hereby agree to modify the above-referenced Agreement as set forth in this Amendment. All provisions of the Agreement not modified by this or previous Amendments remain in effect. The Effective Date of this Amendment is the date of the latest required signature.

OWNER:

By: _____

Title: _____

Date Signed: _____

ENGINEER:

Signed by:

1F523B865E8D44B...

By: David Mohler _____

Title: Vice President _____

Date Signed: 1/9/2026 _____

This is **Attachment 1**, consisting of two pages, to Amendment No. 2.

Modifications

1. Part C is modified to read as follows:

C. Owner agrees to compensate Consultant an amount equal to the cumulative hours charged to the Project by each class of Consultant's employees times standard hourly rates for each applicable billing class for all services performed on the Project, plus reimbursable expenses, not to exceed the amount of ~~\$99,100~~ ~~\$276,500~~, **\$408,150**. Hourly rates for the period September 2023 to August 2024, modified under Amendment No. 1 to add rates from January 2025 to December 2025, **and modified under Amendment No. 2 to add rates from January 2026 to December 2026** are attached as Exhibit B.

Preliminary Design Phase (30%)	\$99,100
Final Design Phase	Fee To be Determined \$44,400
Construction Administration	Fee To be Determined \$40,000
Construction Inspection	Fee To be Determined \$89,000
Post Construction	Fee To be Determined \$4,000
Post Monitoring and Model Recalibration	\$131,650

3. Exhibit B is modified, as shown in the attached, to include hourly rates from January ~~2025, 2026~~, to December ~~2025, 2026~~.

EXHIBIT B

Hourly Rate Sheet **Effective September 2023 through August 2024**

Job Classification	Hourly Rate
Principal	\$330/hr
Technical Director	\$330/hr
Senior Project Manager	\$255/hr
Project Manager	\$235/hr
Senior Engineer	\$250/hr
Project Engineer	\$180/hr
Staff Engineer	\$140/hr
Senior CAD Technician/Designer	\$145/hr
Intern	\$80/hr

Hourly Rate Sheet
Effective January 2025 2026 through December 2025 2026

Job Classification	Hourly Rate
Principal	\$350/hr
Technical Director	\$340/hr
Senior Project Manager	\$265/hr
Project Manager	\$250/hr
Senior Engineer	\$255/hr
Project Engineer	\$200/hr
Staff Engineer	\$150/hr
Senior CAD Technician/Designer	\$160/hr
Intern	\$80/hr
Senior Registered Land Surveyor	\$250/hr \$255/hr
Registered Land Surveyor	\$210/hr
Staff Surveyor	\$145/hr
Senior Survey Crew Chief	\$190/hr \$195/hr
Survey Crew Chief	\$170/hr
Survey Crew Member	\$95/hr \$100/hr
Researcher	\$150/hr
Technician	\$135/hr
Resident Project Representative	\$205/hr

Attachment 2

PROPOSAL

November 14, 2025

Karen Saavedra, P.E.
Project Manager
American Structurepoint
9025 River Road, Suite 200
Indianapolis, IN 46240
P: (317) 547-5580

Via e-mail: ksaavedra@structurepoint.com

**RE: Proposal to Provide Professional Engineering Services
Lawrence Sewer Rehabilitation Post-Construction Model Calibration**

Dear Karen:

Powers Engineering, Inc. (Powers) is pleased to submit our proposal to perform Professional Engineering Services for the above-referenced project.

1.0 PROJECT UNDERSTANDING

The project includes the post-construction hydrologic and hydraulic (H&H) model calibration of the 71st Street lift station sewer basin ~~and the 52nd Street lift station sewer basin~~. Historically, recurring SSOs have occurred in these basins (71st Street and 46th Street/Post Road SSOs) and significant sanitary sewer rehabilitation has been completed in both basins.

2.0 SCOPE OF WORK

The professional engineering services for the project are described in the subtasks below and in attachments to this proposal:

1. Project Management, Coordination, and Quality Control

- A. Assign a Project Manager who will coordinate Project activities and will be the principal contact.
- B. Prepare and submit monthly invoices throughout the project.
- C. Attend coordination meetings as required.
- D. Provide quality assurance/quality control assessments throughout the project.

2. Flow Monitoring Support and Analysis

- A. In coordination with Structurepoint, identify the number and locations of temporary flow monitors and rain gauges to be installed.

- B. Review flow and rain data during the monitoring period and identify any data quality issues.
- C. It is assumed that the flow monitoring period will last three months.
- D. It is assumed that 6 flow meters will be calibrated for the 71st Street lift station sewer basin, including previous meter numbers 11341005, 11273014, 11273009, 10342067, 10342069, and 10331022.
- ~~E. It is assumed that 7 flow meters will be calibrated for the 52nd Street lift station sewer basin, including previous meter numbers 14181031E, 14181016, 14181008, 14181015, 26181027, 26074042, 26083026.~~
- F. It is assumed that there will be ~~two~~ rain gauges, one in each sewer basin.

3. Model Calibration

- A. Analyze flow and rainfall data for input into the model.
- B. Calibrate dry and wet weather flow. Calibration will be a continuous simulation calibration for three months.
- C. Develop an H&H Modeling Report that includes the following items:
 - i. Relevant output and output summaries from the H&H model;
 - ii. Flow monitoring data used to develop the H&H model;
 - iii. Relevant precipitation data from the flow monitoring period and rain gauge locations;
 - iv. Description of the type of collection system model;
 - v. Description of how the H&H model was developed;
 - vi. A map showing the SSCS sewershed delineations;
 - vii. A final modeling analysis of the H&H model with proper calibration and validation that meets the following table, based on the CWIEM Code of Practice for the Hydraulic Modeling of Urban Drainage Systems Version 01, 2017:

<u>Hydrograph Component</u>	<u>Calibration and Validation Requirement</u>
Timing	H&H Model shall predict the timing of the peaks and troughs of the hydrograph should be +/- 1 hour when comparing the modeled hydrograph to the observed flow meter hydrograph.
Flooding	H&H Model shall predict any flooding or SSOs and the volume associated with these conditions shall be equivalent to the observed volumes.
SSO discharges	H&H Model shall predict any Respondent's SSO locations and the volume and the peak flow rate from the modeled SSO discharges should be equivalent to the observed SSO discharge volume and peak flow rate. The curve shapes for volume and the flow rate from modeled SSO discharges shall also be equivalent to the curve shapes for volume and flow rates for the observed SSO discharges.
Peak Flow Rate	The H&H Model hydrograph shall be within -15% to +25% of the observed flow meter data or within +/- 0.1 MGD for sewershed locations with very small flow.

Flow Volume	The H&H Model hydrograph shall be within -10% to +20% of the observed flow meter data or within +/- 0.1 MGD for sewersheds locations with very small flow.
-------------	--

- viii. Graphs/charts that demonstrate the H&H model satisfied the modeling requirements at each SSO location and flow meter location;
- ix. Description of the assumptions used in the H&H model, including a table that summarizes the I/I input of the model.

D. *DELIVERABLES:*

- i. Updated and calibrated existing conditions model.
- ii. Final H&H Modeling Report, including the calibration results.

4. Alternatives Modeling

- A. Based on the post-construction calibration, update the sizing of the preferred SSO CAP alternative.
- B. Prepare summary result outputs.

C. *DELIVERABLES:*

- i. Alternatives models.
- ii. Summary results.

3.0 SCHEDULE

Powers will initiate project activities upon receipt of notice to proceed. It is anticipated that the flow monitoring period will conclude by May 31 of year selected for post-construction monitoring. The model update and calibration will be complete by August 31 of each year. The alternatives modeling will be complete by October 31 of each year. Note the schedule may be impacted by such factors as data receipt delays, alternative complexity, review and coordination time, unforeseen circumstances, etc.

4.0 FEE

The scope of work described by this proposal will be performed for the following lump sum amounts:

1. 71st Street Lift Station (71st Street SSO) Basin Calibration: \$98,000.
2. ~~52nd Street Lift Station (46th Street & Post Read SSO) Basin Calibration: \$107,000~~

Additional work requested by Structurepoint, not described in the scope included in this proposal, will be performed at an hourly rate plus cost fee as negotiated and approved by Structurepoint and Powers prior to performing the additional work.

5.0 ASSUMPTIONS

- Structurepoint will coordinate with Powers on the complexity and time required to perform services within the allotted budget. Services beyond the scope of this proposal will be considered additional work and will be for additional fee.
- Structurepoint will provide GIS files of the system, information necessary to update the model, and any alternatives to be evaluated.

- Flow monitoring services and lift station timing studies will be performed by others.

We look forward to the opportunity to work with Structurepoint on this important project. If there are any questions or comments on this proposal, feel free to contact me at (812) 582-1473 or csm@powersengineeringinc.com.

Sincerely,

Craig Miller, P.E.
Vice President
Powers Engineering, Inc.

Attachment 3

January 5, 2026

American Structurepoint
Attention: Karen Saavedra
9025 River Road,
Indianapolis, IN 46240

Subject: Temporary Level Monitoring Services – Lawrence, IN

Dear Karen,

ADS Environmental Services (ADS) is pleased to provide you with this proposal to assist with your temporary flow monitoring project in Lawrence, IN. ADS will perform these services as outlined below. The phases of a successful flow monitoring project are rooted in highly experienced and trained staff that perform this work on a daily basis and the use of industry leading monitoring technology, which will be provided by ADS.

By partnering with ADS you are choosing an experienced and reputable company with over 40 years of experience in manufacturing flow monitoring hardware and providing turnkey field services for our customers. ADS has all of the necessary equipment, staff, and experience to complete this project.

We have outlined in the proposal, our scope of work, and base cost for the 6 monitoring locations for 3 months. Any of the details of this proposal can be discussed in more detail, if needed. We stand committed to provide a high level of service and professionalism on your project. If you have any questions or comments, please feel free to contact me directly.

Sincerely,

A handwritten signature in cursive script that reads 'Mallory Johnson'.

Mallory Johnson
Key Account Manager
ADS Environmental Services
463.203.3713
mjohnson4@idexcorp.com

Anticipated Scope of Work (Contingent on final Contract Documentation)

ADS Environmental Services ("ADS") will provide all the necessary components required to conduct a temporary level monitoring study for American Structurepoint, ("Client") for a period of 3 months. Should it be necessary, an extension cost has also been provided to extend the monitoring period. The work will be performed as set forth below:

Phase I – Mobilization

- 1) **Kick-off Meeting:** Phase I will begin with a kick-off meeting (in person or virtual) between representatives of the Client and ADS. The purpose of the kick-off meeting is to discuss project scope, establish lines of communication, set milestones, set the project schedule, and verify payment terms and processes. Throughout the project ADS staff will communicate with the Client regularly regarding project related activities.
- 2) **Site Location/Investigation:** ADS will work with the Client to confirm the location of the monitor installation(s). ADS representatives will perform a site investigation at each location to ensure the site hydraulics are suitable for monitoring. Final site locations will be mutually agreed upon by ADS and the Client.
- 3) **Equipment:** Data collection for this project will be accomplished using the following instrumentation:
 - a. ADS will utilize Rain Alert III rain gauges for this project. The rain gauge will consist of a standard 8-inch non-heated tipping bucket for rainfall collection connected to a datalogger. The Rain Alert III will include cellular telemetry.
 - b. ADS will utilize Triton+ area/velocity flow monitors during this project for the sewer locations identified. A typical monitor installation in a sewer pipe will include a submerged flow sensor mounted at the invert of the pipe. The sensor will include velocity and redundant depth measurements. Depending on the pipe size and hydraulic conditions, alternate sensor configurations may be used to optimize data capture. The Triton+ flow monitor will include cellular telemetry.
- 4) **Site Installation:** ADS will utilize a standard 2-person field crew for fieldwork and comply with US Federal standards for confined-space entry. All traffic control used in the project will include an ADS traffic control plan prior to any field work. The proposed monitoring sites will be located, inspected, and verified for hydraulic suitability. ADS will also check for debris that could impact data quality and coordinate any required cleaning efforts with the Client. Level monitors will be installed and programmed to collect data per the customer's requirements as well as rain gauge locations, if applicable, will also be inspected for access and suitability for accurate data collection.
- 5) **Monitor Activation:** Once installed, the monitors described above will be activated and set to take readings at 5 minute intervals, as directed by the Client.
- 6) **Site Confirmations:** ADS will perform confirmations periodically at each flow monitor location throughout the duration of the project. ADS Field crews will take manual depth readings with a ruler and velocity readings with a portable, instantaneous velocity meter to verify that the flow monitor is collecting data based on the actual existing hydraulic conditions at each location. Confirmations are performed at least twice throughout the monitoring period or as needed based on observed level variability, site maintenance, and equipment replacement.

- 7) Site Reports: Site reports will be generated upon completion of the site investigations & installation work. The site reports will include photos of the general location, physical characteristics and diameters of the proposed monitoring locations, level measurements, and other comments pertinent to the location such as any special traffic or safety issues. Final site reports will be uploaded to the ADS PRISM website for access.

Phase II – Flow Monitoring

- 1) Level Monitoring. Once the monitor(s) are installed and confirmed to be recording accurately, ADS will monitor the levels for a period of 3 months. ("monitoring period"). The monitoring period can be extended based on mutual consent and written agreement/approval of additional work and quoted costs.
- 2) Data Collection and Review: Once activated, each monitor will collect and wirelessly transmit data to the ADS PRISM software platform. The frequency of wireless data delivery to PRISM will be determined by the Client and configured during installation. ADS will assign Hydraulic Data Analysts (Analysts) to this project who will review data at least twice per week. ADS Analysts will coordinate with ADS field crews to schedule work orders to perform any preventative and corrective maintenance required. ADS will provide training for Client staff to utilize the PRISM platform as needed.
- 3) Equipment Maintenance. The ADS Analyst will review the data at least twice weekly throughout the monitoring period. ADS will use wireless equipment whenever possible. However, field crews may need to return to the location as determined by routine data review to collect the data and perform site maintenance and confirmations as necessary. Maintenance activities may include confirmations as needed, re-establishing wireless communication, and battery replacement. The field crews will work to maximize data availability and system uptime.
- 4) Demobilization. Field crews will continue site maintenance and confirmations (as necessary) until the end of the monitoring period. Once authorized, crews will begin removing all monitoring equipment and provide data to the Analyst.

Phase III – Data Analysis and Reporting

- 1) Data Analysis: Throughout the level monitoring period, a certified ADS Hydraulic Data Analyst will analyze and perform quality assurance and quality control (QA/QC) of the data. The Analyst will utilize level readings, in conjunction with site confirmations, to verify data accuracy and repeatability. Once QA/QC of the data is complete, processed data will be available to the Client.
- 2) Data Viewing and PRISM Access: ADS utilizes a cloud-based platform, PRISM, for all data and reporting objectives of a level monitoring study. Users can access the raw and processed data, print hydrographs, scattergraphs, and tabular reports, and export data to common files such as .CSV or .XLS if needed.
- 3) Deliverables: The deliverable for this project will consist of a processed value for depth and rain as determined by the ADS project team. The processed data and Site Reports will be made available via PRISM .

Client Responsibilities

ADS is asking that the Client perform the following functions for this Project:

1. Provide access to the site of work with sufficient area for placement of personnel and equipment, including all right-of-way and ramps, if required. This includes, but is not limited to, exposing manholes, clearing easements and/or constructing roads or ramps suitable for truck/van access, if necessary.
2. Assist in obtaining and complying with any special permits such as right-of-way access.
3. Provide any mapping information to be used on monitoring installations, data analysis and reporting
4. Provide any information concerning bypasses, overflows, base flows, critical surcharge areas, and maintenance activities that may affect flow monitoring data.

Fee For Professional Services

Temporary Level Monitoring Study

6 flow meters for 3 months			
Task	Units	Unit Cost	Total
Flow Meter Site Investigations / Installation (each)	6	\$1,400.00	\$8,400.00
Flow Monitor Service and Rental (per meter/month)	18	\$1,075.00	\$19,350.00
PRISM Access	18	\$50.00	\$900.00
Project Total			\$ 28,650.00

Notes and Assumptions:

- (1) No Prevailing Wages or Living Wages will apply.
- (2) Costs and Labor hours above are estimated using all information ADS has to date. Extensive traffic control or sites that contain unsafe atmospheric conditions may alter the unit costs.
- (3) Assumed municipality is Tax Exempt or project contract is a pass-through for tax exemption – otherwise local taxes will be added to the final invoice.
- (4) All project location maps to be submitted 2 weeks before installation work starts.
- (5) Pricing assumes standard "2-man ADS Crew with 1 ADS Fleet Vehicle" for all installations, maintenance, and equipment removal. Additional traffic control could be needed depending on the complexity of the traffic control and may require a 3rd party or Client assistance.